Blocking of Connexin-Mediated Communication Promotes Neuroprotection during Acute Degeneration Induced by Mechanical Trauma
نویسندگان
چکیده
Accruing evidence indicates that connexin (Cx) channels in the gap junctions (GJ) are involved in neurodegeneration after injury. However, studies using KO animal models endowed apparently contradictory results in relation to the role of coupling in neuroprotection. We analyzed the role of Cx-mediated communication in a focal lesion induced by mechanical trauma of the retina, a model that allows spatial and temporal definition of the lesion with high reproducibility, permitting visualization of the focus, penumbra and adjacent areas. Cx36 and Cx43 exhibited distinct gene expression and protein levels throughout the neurodegeneration progress. Cx36 was observed close to TUNEL-positive nuclei, revealing the presence of this protein surrounding apoptotic cells. The functional role of cell coupling was assessed employing GJ blockers and openers combined with lactate dehydrogenase (LDH) assay, a direct method for evaluating cell death/viability. Carbenoxolone (CBX), a broad-spectrum GJ blocker, reduced LDH release after 4 hours, whereas quinine, a Cx36-channel specific blocker, decreased LDH release as early as 1 hour after lesion. Furthermore, analysis of dying cell distribution confirmed that the use of GJ blockers reduced apoptosis spread. Accordingly, blockade of GJ communication during neurodegeneration with quinine, but not CBX, caused downregulation of initial and effector caspases. To summarize, we observed specific changes in Cx gene expression and protein distribution during the progress of retinal degeneration, indicating the participation of these elements in acute neurodegeneration processes. More importantly, our results revealed that direct control of GJ channels permeability may take part in reliable neuroprotection strategies aimed to rapid, fast treatment of mechanical trauma in the retina.
منابع مشابه
Specific gap junctions enhance the neuronal vulnerability to brain traumatic injury.
Traumatic brain injury results in neuronal loss and associated neurological deficits. Although most research on the factors leading to trauma-induced damage focuses on synaptic or ionic mechanisms, the possible role of direct intercellular communication via gap junctions has remained unexplored. Gap junctions connect directly the cytoplasms of coupled cells; hence, they offer a way to propagate...
متن کاملThermostabilized chondroitinase ABC Promotes Neuroprotection after Contusion Spinal Cord Injury
Background: Chondroitinase ABC (cABC), due to its loosening impact on the extracellular matrix scaffold, has been used to enhance regeneration of injured axonal tracts after spinal cord injury (SCI). However, cABC thermal instability at physiological temperature has limited its clinical application. The disaccharide trehalose has been shown to increase the stability of cABC in body temperature....
متن کاملIntracellular spermine prevents acid-induced uncoupling of Cx43 gap junction channels
Polyamines (PAs), such as spermine and spermidine, modulate the activity of numerous receptors and channels in the central nervous system (CNS) and are stored in glial cells; however, little attention has been paid to their role in the regulation of connexin (Cx)-based gap junction channels. We have previously shown that PAs facilitate diffusion of Lucifer Yellow through astrocytic gap junction...
متن کاملCaffeic acid phenethyl ester prevents neonatal hypoxic-ischaemic brain injury.
Neonatal hypoxic-ischaemic (HI) brain injury resulting in encephalopathy is a leading cause of morbidity and mortality with no effective treatment. Here we show that caffeic acid phenethyl ester (CAPE), an active component of propolis, administered either before or after an HI insult, significantly prevents HI-induced neonatal rat brain damage in the cortex, hippocampus and thalamus. In additio...
متن کاملP7: Valproic Acid Mediated Neuroprotection and Neurogenesis after Acute Spinal Cord Injury
لطفاً به چکیده انگلیسی مراجعه شود.
متن کامل